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Abstract 

This  research considers the extension of special functions called Positive 

Linear Operators on Riesz space, the positive linear operator whose domain 

is a Riesz subspace extends to a  positive  linear operator whose domain is all 

Riesz space if and only if it is dominated by a monotone sub linear function, 

and taking in consideration important theorem concerns   extendable positive 

operator whose domain is an ideal always has a smallest extension. And 

clarifies an extreme points of the convex set have been characterized.    . 
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Introduction 
In this research we consider the extension of special functions called Positive 

Linear Operators on Riesz space, and important theorem concerns an 

extension properties of positive operators. The first result of this is a positive 

linear operator whose domain is a Riesz subspace extends to a positive linear 

operator whose domain is all Riesz space if and only if it is dominated by a 

monotone sub linear function. Finally, it was clarified that an extendable 

positive linear operator whose domain is an ideal always smallest extension. 

 

Definition1 
A Riesz space (or a vector lattice) is an ordered vector space E  with the 

additional property that for each pair of elements Eyx ,  the supremum and 

infimum of the set },{ yx  both exist in E .  

 

Definition2 

A Riesz space is called  Dedekind complete whenever every nonempty subset 

that is bounded from above has supremum (or, equivalently, whenever every 

nonempty subset bounded from below has an infimum). 
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Definition3   

 A function FET :   between two vector spaces means linear operator 

that it satisfies the following axiom: 

)()()( yTxTyxT   Holds for all Eyx , and all , . 

 

Definition4 

A function  FGP :  , whereG  is a (real) vector space and F is a Riesz 

space, is called sub linear whenever 

(a)   )()()( ypxpyxp   Holds for all   Gyx , ; and 

(b)   )()( xpxp       Holds for all   Gx     and all R 0 . 

 

Definition5 

The extension of  YXT :  to a set XX ˆ  is an operator 

Such that )()(ˆ xTxT   for all Xx .  YXT ˆ:ˆ
 
 

Definition6 

A function FEf :  between two Riesz spaces is called 

monotone whenever yx   in E  implies )()( yfxf   in F . 

The starting point in the theory of positive operators is a fundamental 

extension theorem of L. V. Kantorovic. The importance of the result 

lies in the fact that in order for operator 
  FET :  to be the 

restriction of a (unique) positive operator from E  into F , it is 

necessary and sufficient for T  to be additive on E . The details 

follow. 

Theorem 1 (Kantorovic). If  
  FET :  is additive (

)()()( yTxTyxT   holds for all 
Eyx, ), then T extends 

uniquely to a positive operator from E  into F . Moreover, the unique 

extension ( denoted by T  again ) is given by 

   

)()()(   xTxTxT 

For each Ex . 

Proof. Clearly, if the operator FES :  is an extension of T , 

then S  must be a positive operator and )()()(   xTxTxS  must 

hold for each Ex . 
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That is, T  has at most one extension, and if it does have an extension, say S , 

then )()()(   xTxTxS  must hold for each Ex . Thus, what remains to 

be shown is that )()()(   xTxTxS  defines an operator from E  into F . 

The additivity of S  is established frist. To do this, we need the following 

property: If zyx   with 
Ezy, , then )()()( zTyTxS   holds. ( 

Indeed, from zyxxx    it follows that   xyzx , and so by 

the additivity of 
  FET :  we see that 

)()()()()()(   xTyTxyTzxTzTxT . 

Thus, )()()()()( zTyTxTxTxS    holds. Therefore, if Evu , , then  

)()(])[]([)(   vuTvuTvuvuSvuS  

)()()]()([)]()([ vSuSvTvTuTuT  
. 

For the homogeneity of S  we need the property: If  xy 0  holds in E , 

then )()( xTyT   in F . (Indeed, from xy 0  it follows that 

).)(])[()()()( xTyxyTyxTyTyT   

Now let 
Ex  and 0 . Pick two sequences of rational numbers }{ nr  and 

}{ nt  with  nr0  and  nt0 . Using the additivity of T  on 
E , we 

see that  

)()()()()( xTtxtTxTxrTxTr nnnn   , 

And from this it follows that )()( xTxT   . Finally, let Ex  and  . 

If 0 , then 

)()()()()()( xSxTxTxTxTxS   
, 

And if  ˂ 0, then 

)()()()]([)( xSxSxSxS    

The proof of the theorem is now complete. 

The next result is the most general version of what is known as the 

Hahn Banach extension theorem. This theorem plays a fundamental 

role in modern analysis and without exception will be of great 

importance to us here. 

  

Theorem 2 (Hahn-Banach). Let G   be a (real) vector space, F  a 

Dedekind complete Riesz space, and let FGP :   be a sublinear 

function. If  H   is a vector subspace of G and   FHS :   is an 



  Scientific Journal of Faculty of Education, Misurata University-Libya, Vol. 1, No. 10, Mar. 2018 

Published on Web 01/3/2018           

 م1028 مارس ،العاشرـــ العدد  الأولالمجمد  ،ليبيا ،جامعة مصراتة ،المجمة العممية لكمية التربية 
  

41 

 

operator satisfying )()( xPxS    for all Hx     , then there exists 

some operator FGT :   such that 

1. ST   on H (i.e., T  is an extension of S ); and  

2. )()( xPxT   holds for all Gx .  

4.  

Proof. The critical step is to show that S   has an extension satisfying (2) 

on an arbitrary vector subspace generated by H  and one extra element. If 

this is done, then an application of Zorn's lemma guarantees an extension 

of S  to all of G  with the desired properties. 

To this end, let Hx , and let },:{   Hyxyv . If  

FVT :  is an extension of S , then 

 

)()()( yTySxyT   

  

must hold for all Hy and  .  Put  )(xTz   . To complete the 

proof, we have to show the existence of some z  such that 

 

 )(      )()( xypzyS                    

holds for all Hy  and  . For   ˃ 0 , )(  is equivalent to 

)()( xypzyS  

for all Hy , while for  ˂ 0, )(  is equivalent to 

)()( xypzyS  
for all Hy . The last two inequalities certainly will be satisfied for 

a choice of z for which 

 

)(  )()()()( uSxuPzxypyS  

holds for all Huy , . . 

Finally, to see that there exists some Fz  satisfying )( , start by 

observing  that for each Huy ,  we have 

 

))(()()()()( xuxyPuypuySuSyS  

)()( xuPxyp                                                  

and so 

)()()()( uSxuPxypyS  
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holds for all Huy , . This inequality coupled with the Dedekind 

completeness of F  guarantees that both 

 

}:)()(sup{ HyxypySs  

and 

}:)()(inf{ HuuSxuPt  

exist in F , and they satisfy ts  . Now any Fz satisfying tzs   

 (for instance, sz   ) satisfies )( , and  hence (*). The proof of 

theorem is now complete.  

Theorem 3  Let FET :  be a positive operator between two 

Riesz spaces with F  Dedekind complete. Assume also that G  is a 

Riesz subspace of E and that FGS :  is an operator satisfying

)()(0 xTxS    for all 
Gx . Then S   can be extended to a 

positive operator from E  into F  such that )()(0 xTxS   for all 

Ex   

Proof. Let FEP :  be defined by )()(  xTxp , and note that P  

is sublinear and that )()( xpxS   holds for all Gx . By Theorem 2 

there exists an extension of S  to all of E  (which we denote by S    

again) satisfying for all Ex . Hence, if
Ex , then 

  0)0()()()()(   TxTxpxSxS 

And so )()()(0 xTxpxS   holds, as desired. 

 The rest of the research is devoted to extension properties of positive 

operators. The first result of this kind tells us that a positive linear operator 

whose domain is a Riesz subspace extends  to a positive linear operator 

whose domain is all Riesz space if and only if it is dominated by a monotone 

sub linear function. 

Theorem 4 Let E  and F  be Riesz spaces with F Dedekind complete. If G

is a Riesz subspace of E  and FGT :  is a positive operator, then the 

following statements are equivalent: 

1.  T Extends to a positive operator (from  E  into F ). 

2. T  Extends to an order bounded operator (from E  into F ). 

3. There exists a monotone sub linear function FEP :   satisfying 

)()( xPxT   for all Gx  
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Proof. (1)   (2) Obvious. 

(2)   (3) Let ),( YXS b  satisfy )()( xTxS  for all Gx .Then 

FEP :   defined by )()(  xSxp  is monotone sub linear and satisfies 

)()()()()( xpxSxSxTxT  
 

For all Gx . 

(3)   (1)  Let FEP :  be a monotone sublinear function satisfying 

)()( xPxT   for all Gx  Then )()(  xpxq  defines a sublinear function 

from E into F  such that 

)()()()( xqxpxTxT    

Holds for all Gx . Thus, by the Hahn-Banach theorem there exists an 

extension ),( FER   of T  satisfying )()( xqxR   for all Ex . In 

particular, if   
Ex , then the relation 

  0)0()()()()(   pxpxqxRxR   

Implies that )(0 xR  holds. That is, R is a positive extension of T  to all of

E , and the proof is finished. 

Definition7 

 A subset A  of a Riesz space is called solid whenever yx   and Ay  

imply Ax . 

Definition8 

 A  Solid vector subspace of a Riesz space is referred to as an ideal. From the 

identity  yxyxyx 
2

1
, it follows immediately that every ideal is a 

Riesz subspace. 

 The next result deals with restrictions of positive operators to ideals. 

Theorem 5 If FET :  is a positive operator between two Riesz spaces 

with F  Dedekind complete, then for every ideal A  of F  the formula 

  ExAyxyyTxTA  ,   ;  0:)(sup)(  

Defines a positive operator from E  into F .  Moreover, we have 

1. TTA 0  

2. TTA   on A and 0AT
 
on  dA ;  and 

3. If B  is another ideal with BA   , then BA TT   holds. 

Proof.  Note first that 
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  AyyxTxTA :)(sup)(  

Holds for all
Ex . According to theorem1 it is enough to show that  AT  is 

additive on 
Ex  . 

 To this end, let
Eyx, . If   

 Az , then inequality 

zyzxzyx  )(  

Shows that 

  )()()()()( yTxTzyTzxTzyxT AA   

And hence 

   )()()( yTxTyxT AAA   

On the other hand, the inequality   

)()( vuyxvyux     

 Implies that 

)()()( yxTyTxT AAA   

Therefore,  )()()( yxTyTxT AAA     holds, so that  AT
 
is additive on E .  

Properties (1)-(3) are now an easy consequence of the formula defining AT . 

As we have mentioned before, if G  is a vector subspace of a Riesz space E , 

then it is standard to call an operator FGT :   positive whenever 

Gx0  implies FxT  )(0 . 

Consider a positive operator FGT : , where G is a vector subspace of E . 

By )(T  we shall denote the collection of all positive extensions of T  to all 

of E . That is, 

0:),({)(  SFEST  and  TS   on }G . 

 An extendable positive operator whose domain is an ideal always has a 

smallest extension. 

Theorem6   Let E  and  F be two Riesz spaces with F  Dedekind complete, 

let A  be an ideal of E , and let FAT :  be a positive operator. If

 )(T , then T  has a smallest extension. Moreover, if in this case

)(min TS  , then 

 xyAyyTxS  0 , :)(sup)(  

Holds for all Ex           . 

Proof.  Since T  has (at least) one positive extension, the formula 

  ExxyAyyTxTA  , 0 , :)(sup)( ,   
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defines a positive operator from E  into F  satisfying  TTA   on A , and so

)(TTA  . (See the proof of Theorem 4) 

Now if )(TS  , then TS   holds on A , and hence  SST AA   . 

Therefore, )(min TTA 
 
 holds, as desired. 

For a positive operator FET :  with F  Dedekind complete, the 

preceding theorem implies that for each ideal A of E  the positive operator 

AT  is the smallest extension of the restriction of T  to A . 

Among the important points of a convex set are its extreme points. 

Definition9 

 Recall that an element e  of a convex set C  is said to be an extreme point of 

C  whenever the expression yxe )1(   , with Cyx ,  and 10   , 

implies eyx  . 

The extreme points of the convex set )(T  have been characterized by Z. 

Lipecki,  D. Plachky, and W. Thomsen as follows. 

Theorem 7 (Lipecki - Plachky – Thomsen). Let E  and F be two Riesz 

spaces with F  Dedekind complete. If G  is a vector subspace of E  and 

FGT :  is a positive operator, then for an operator )(TS   the 

following statements are equivalent: 

1. S  is an extreme point of )(T  

2. F or each Ex  we have   0:)(inf  GyyxS  

Proof: (1)  (2) Define FEp : by 

                         GyyxSxp  :)(inf)(  

For each Ex .Clearly, p is a sublinear mapping that satisfies  )(0 xp

)()( xSxp   for all Ex , and also 0)( yp  for each Gy .  

Next, we claim that 0)( yp  holds for all Ex . To see this, assume by way 

of contradiction that 0)( xp  holds for some Ex . Define the operator 

  FRxR  ::  by )()( xpxR   , and note that )()( xpxR    holds. 

By the Hahn-Banach theorem, R has an extension to all of E  (which we 

shall denote by R  again) such that )()( zpzR   holds for all Ez ; clear, 

0R . It easily follows that )()( zpzR   holds, and so 0)( yR  for all

Gy . Since for each 0z  we have  
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)()()()( zSzSzpzR   

And 

)()()()()( zSzSzpzRzR  , 

It is easy to see that 0 RS  and 0 RS  both hold. Thus, RS   

and RS   both belong to )(T . Now the relation 

)(
2

1
)(

2

1
RSRSS   

Coupled with SRS   and SRS  , shows that S  is not an 

extreme point of )(T , a contradiction. Thus, 0)( xp  holds for each

Ex , as desired. 

(2)   (1) Let S satisfy (2), and let RQS )1(    with 

)(, TRQ  and  10    . Then for each Eyx ,  we have 

yxSyxRSyxQyQxQ 






 








111
)()( . 

In particular, if Ex  and  Gy  , then it follows from 

)()()( yTyQyS   that 

yxSxQyQySxSxQxS 










1
1)()()()()()( . 

Taking into account our hypothesis, the last inequality yields 

)()( xQxS   for each Ex , and this shows that S  is an extreme 

point of )(T . The proof of the theorem 
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