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EXTENSION OF POSITIVE LINEAR OPERATORS
ON RIESZ SPACE
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Abstract

This research considers the extension of special functions called Positive
Linear Operators on Riesz space, the positive linear operator whose domain
is a Riesz subspace extends to a positive linear operator whose domain is all
Riesz space if and only if it is dominated by a monotone sub linear function,
and taking in consideration important theorem concerns extendable positive
operator whose domain is an ideal always has a smallest extension. And
.clarifies an extreme points of the convex set have been characterized.
Keywords: extension, Dedekind complete space, linear operator, Riesz
space, sublinear function.

Introduction

In this research we consider the extension of special functions called Positive
Linear Operators on Riesz space, and important theorem concerns an
extension properties of positive operators. The first result of this is a positive
linear operator whose domain is a Riesz subspace extends to a positive linear
operator whose domain is all Riesz space if and only if it is dominated by a
monotone sub linear function. Finally, it was clarified that an extendable
positive linear operator whose domain is an ideal always smallest extension.

Definitionl
A Riesz space (or a vector lattice) is an ordered vector space E with the
additional property that for each pair of elements x,y € E the supremum and

infimum of the set {x, y} both existinE .

Definition2

A Riesz space is called Dedekind complete whenever every nonempty subset
that is bounded from above has supremum (or, equivalently, whenever every
nonempty subset bounded from below has an infimum).
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Definition3

A function T: E——F petween two vector spaces means linear operator
that it satisfies the following axiom:
Holds for all x,ye Eand alla, 8 € R.T (ax+ fy) = T (X) + ST (y)

Definition4

A function P:G——F ,whereG isa (real) vector space and F is a Riesz
space, is called sub linear whenever
(@ p(x+y)<p(x)+p(y) Holds forall x,yeG-and

(b) p(Ax)=Ap(x) Holdsforall xeG andall0<AeR.

Definition5
The extension of T:X — Y toasetX < X isan operator
T: X ——Y Suchthat T(x)=T(x) forallxe X .

Definition6
A function f : E——F between two Riesz spaces is called
monotone whenever x <y in E implies f(x)< f(y) inF .

The starting point in the theory of positive operators is a fundamental
extension theorem of L. V. Kantorovic. The importance of the result

lies in the fact that in order for operator T:E" ——>F " to be the
restriction of a (unique) positive operator from E into F, itis

necessary and sufficient for T to be additive on E*. The details
follow.

Theorem 1 (Kantorovic). If T:E"——F" is additive (
T(x+Yy)=T(x)+T(y) holds forall x,y € E"), then T extends

uniquely to a positive operator from E into F . Moreover, the unique
extension ( denoted by T again ) is given by

TX)=T(x")-T(x")
Foreach xeE.
Proof. Clearly, if the operator S : E——F is an extension of T ,
then S must be a positive operator and S(x) =T (x")—T(x") must
hold for each xe E.
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That is, T has at most one extension, and if it does have an extension, say S,
then S(x) =T (x")—T(x") must hold for each x € E . Thus, what remains to
be shown is that S(X) =T (x")—T(x") defines an operator from E into F .
The additivity of S is established frist. To do this, we need the following
property: If x=y—z with y,ze€ E", then S(x) =T(y)-T(z) holds. (
Indeed, from x=x"—x" =y—z itfollows that X" +z=y+x", and so by
the additivity of T: E" ——>F " we see that

TX)+T@)=TX +2)=T(y+x ) =T(Y)+T(x).

Thus, S(X)=T(x")-T(x ) =T(y)—T(z) holds. Therefore, if u,v e E, then
SU+V)=S([u"+Vv ]-[u +v ]D=TU"+Vv)-T(U +Vv)
=[TU")=TU)I+TV) =TV )=SU)+S(v).

For the homogeneity of S we need the property: If 0<y <x holdsin E,
then T(y) <T(x) in F . (Indeed, from 0 <y < x it follows that
T <STW+TX=y)=T(y+[x-yD) =T(x).)
Now let x e E* and A > 0. Pick two sequences of rational numbers {r.} and
{t.}with 0<r, T2 and 0<t, T 1. Using the additivity of T on E*, we
see that

rTX)=TEX)<TUAX)<T({,x)=t.T(x),
And from this it follows that T (Ax) = AT (X) . Finally, let xe E and 1 € R.
If 1>0,then

S(AX)=T(AX")=T(AX ) =AT(X") —AT(X") = AS(X),

And if 41<0, then

S(Ax) ==S([-A]x) = =(=2)S(x) = AS(X)
The proof of the theorem is now complete.
The next result is the most general version of what is known as the
Hahn Banach extension theorem. This theorem plays a fundamental

role in modern analysis and without exception will be of great
importance to us here.

Theorem 2 (Hahn-Banach). Let G be a (real) vector space, F a
Dedekind complete Riesz space, and let P: G——F Dbe a sublinear
function. If H is a vector subspace of Gand S:H——>F isan
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operator satisfying S(x) <P(x) forall xe H , then there exists

some operator T : G——F such that
1. T=S on H(ie., T isanextension of S); and
2. T(X)<P(x) holds forall xeG.

Proof. The critical step is to show that S has an extension satisfying (2)
on an arbitrary vector subspace generated by H and one extra element. If
this is done, then an application of Zorn's lemma guarantees an extension
.of S to all of G with the desired properties

Tothisend, let xg H,and letv={y+Ax:ye H,AeR}. If

T :V——F isan extension of S, then
T(y+AX) =S(y) + AT (y)

must hold forall ye Hand A €R. Put z=T(x) . To complete the
proof, we have to show the existence of some z such that

S(y) +4z < p(y +4x) (*)
holds forall ye H and A € R.For A>0, (*) is equivalent to
S(y)+z<p(y—x)
forall y e H , while for A<0, () is equivalent to
S(y)-z<p(y-x)
forall y e H . The last two inequalities certainly will be satisfied for
a choice of z for which

S(Y)—p(y—x)<z<P(u+x)-S(u) (*%)
.holds forall y,ue H .
Finally, to see that there exists some z € F satisfying (**), start by
observing that for each y,u € H we have

S(y)+S(u) =S(y+u) < p(y+u) =P(y—Xx+(U+Xx))
< p(y—x)+P(u+x)
and so
S(Y)—p(y—Xx) <P(u+x)-S(u)
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holds for all y,u € H. This inequality coupled with the Dedekind
completeness of F guarantees that both

s =sup{S(y)— p(y—x):yeH}
and
t=inf{P(u+x)—S(u):ueH}

existin F, and they satisfy S <t. Now any z € F satisfying S<z <t

(for instance, z =s ) satisfies (**), and hence (*). The proof of
theorem is now complete.

Theorem 3 Let T : E——F be a positive operator between two

Riesz spaces with F Dedekind complete. Assume also that G is a
Riesz subspace of E and that S : G——F is an operator satisfying
0<S(x)<T(x) forall xeG".Then S can be extended to a
positive operator from E into F such that 0 < S(x) <T(x) for all
xek
Proof. LetP: E——F be defined by p(x) =T(x"), and note that P
is sublinear and that S(x) < p(x) holds for all x € G . By Theorem 2
there exists an extension of S to all of E (which we denote by S
again) satisfying for all x € E . Hence, if x € E™, then

~S(X) =S(-X) < p(-x) =T((-%)")=T(©) =0
And so 0 < S(x) < p(x) =T(x) holds, as desired.

The rest of the research is devoted to extension properties of positive
operators. The first result of this kind tells us that a positive linear operator
whose domain is a Riesz subspace extends to a positive linear operator
whose domain is all Riesz space if and only if it is dominated by a monotone
sub linear function.

Theorem 4 Let E and F be Riesz spaces with F Dedekind complete. If G
is a Riesz subspace of E and T:G——F s a positive operator, then the
following statements are equivalent:

1. T Extends to a positive operator (from E into F ).
2. T Extends to an order bounded operator (from E into F ).

3. There exists a monotone sub linear function P:E——F satisfying
T(x)<P(x) forall xeG
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Proof. (1) = (2) Obvious.

(2) = ((3) LetSeJ (X,Y) satisfy S(x)=T(x)for all XxeG.Then
P:E——F defined by p(x)=|S|(x") is monotone sub linear and satisfies
T(X) <T(x")=S(x") <[S|(x") = p(x)

ForallxeG.
(3) = (1) Let P:E——F be a monotone sublinear function satisfying
T(x) <P(x) forall xeG Then g(x) = p(x") defines a sublinear function
from Einto F such that

T(X)<T(x") < p(x)=a(x)
Holds for allxeG. Thus, by the Hahn-Banach theorem there exists an
extension Re 3(E,F) of T satisfying R(x)<q(x) for allxeE. In

particular, if x e E", then the relation
~R(X) =R(=X) £q(-x) = p((-X)" )= p(0) =0
Implies that 0 < R(x) holds. That is, R is a positive extension of T to all of

E, and the proof is finished.
Definition7

A subset A of a Riesz space is called solid whenever |X/<|y| and y e A
implyx e A.
Definition8

A Solid vector subspace of a Riesz space is referred to as an ideal. From the

identity x v y = %(x +y+[x— y|) it follows immediately that every ideal is a

Riesz subspace.
The next result deals with restrictions of positive operators to ideals.

Theorem 5 If T: E——F s a positive operator between two Riesz spaces
with F Dedekind complete, then for every ideal A of F the formula

TA(X)=sup{I'(y):0£y£x ; yEA,X€E+}
Defines a positive operator from E into F . Moreover, we have
1. O<T,<T

2. T,=T on Aand T,=0on A’: and
3. If B isanother ideal with Ac B  then T, <T; holds.

Proof. Note first that
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T,(X) =sup{|’(x/\ y):ye A+}
Holds for all x e E*. According to theorem1 it is enough to show that T, is

additiveon xeE" .
Tothisend, letx,ye E". If z e A", then inequality

(x+y)Az<xAzZ+YAZ
Shows that
T(X+Y)AZ)STXAZD)+T(YAZ) ST, (X)+T,A(Y)
And hence
TA(X+Y) <T, () +T,A(Y)
On the other hand, the inequality
xAU+YAUVS(x+y)A(u+0)
Implies that
T () +TA(Y) <Ta(x+y)
Therefore, T,(X)+T,(y)=T,(X+y) holds, sothat T, isadditiveonE"
Properties (1)-(3) are now an easy consequence of the formula definingT,.
As we have mentioned before, if G is a vector subspace of a Riesz space E,
then it is standard to call an operator T:G —F  positive whenever
0<xeG impliesO<T(x) e F.
Consider a positive operator T : G — F, where G is a vector subspace of E .
By &£(T) we shall denote the collection of all positive extensions of T to all
of E. That is,
EM)={Se3(E,F):S>0and S=T on G}.
An extendable positive operator whose domain is an ideal always has a
smallest extension.
Theorem6 Let E and F be two Riesz spaces with F Dedekind complete,
let A beanideal of E,andlet T: A— F be a positive operator. If
E(T') # D, then T has a smallest extension. Moreover, if in this case
S =min &(T), then
S(x)=sup{T(y):ye A,0<y<x}
Holds forall xe E* .
Proof. Since T has (at least) one positive extension, the formula
T,(X) :supfl'(y): yeA,0<y<Xx,Xxe E*},
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defines a positive operator from E into F satisfying T, =T onA, and so
T, € &(T). (See the proof of Theorem 4)

Now if S € £(T), then S=T holdson A, and hence T,=S,<S .
Therefore, T, =min &(T) holds, as desired.

For a positive operator T : E——F with F Dedekind complete, the
preceding theorem implies that for each ideal Aof E the positive operator
T, is the smallest extension of the restriction of T t0 A

Among the important points of a convex set are its extreme points.
Definition9

Recall that an element € of a convex set C is said to be an extreme point of
C whenever the expressione = AX+(1—A)y  with X,y €C and0 <A <1,
impliesX=Yy=¢€,

The extreme points of the convex set $(T) have been characterized by Z.
Lipecki, D. Plachky, and W. Thomsen as follows.

Theorem 7 (Lipecki - Plachky — Thomsen). Let E and F be two Riesz
spaces with F Dedekind complete. If G is a vector subspace of E and

T :G — F isapositive operator, then for an operator S € &(T) the
following statements are equivalent:

1. S isan extreme point of &(T)
2. Foreach X€E we have inf {5(|X— )y €G}=0

Proof: (1) = (2) Define p:E — F by

p(x) =inf{S(x—y)): y € G}
For each x € E .Clearly, pis a sublinear mapping that satisfies 0 < p(x) =
p(—x) < S(|x|) forall xe E,and also p(y)=0 foreach yeG.

Next, we claim that p(y) =0 holds for all X € E . To see this, assume by way
of contradiction that p(x) > 0 holds for some X € E . Define the operator
R:{ix:AeR}—F byR(Ax) = Ap(x), and note that R(Ax) < p(x) holds.
By the Hahn-Banach theorem, R has an extension to all of E (which we
shall denote by R again) such that R(z) < p(z) holds for all z € E ; clear,

R=0. It easily follows that |R(z)| < p(z) holds, and so R(y) =0 for all
y € G. Since for each z >0 we have
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R(2) < p(z) < S(|z)) =S(2)
And

—R(2) =R(-2) < p(-2) < S(~2)) =S(2),
Itis easy toseethat S—R>0 and S+ R >0 both hold. Thus, S—R
and S + R both belong to &£(T). Now the relation

1 1
S :E(S_R)+E(S+R)

Coupled with S—R#S andS+R # S, shows that S is not an
extreme point of £(T), a contradiction. Thus, p(x) =0 holds for each

X € E, as desired.

(2) = (1) Let Ssatisfy (2), and let S =AQ + (1— A)R with

Q,Reé(T)and 0<A<1.Then foreach x,y e E we have
1-2

1 1
|Q(X)—Q(y)|SQ|X—y|=(zS—TR)|x—y|szS|x—y|.

In particular, if xe E and y eG , then it follows from
S(y) =Q(y) =T(y) that

(0 -~ Q)| <[S(9) — S(¥)] +]Q(y) - Q)| < (1+%js|x —y.

Taking into account our hypothesis, the last inequality yields
S(x) =Q(x) foreach x € E, and this shows that S is an extreme

point of &(T). The proof of the theorem
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